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ABSTRACT 

Thermophysical properties mapping in a solid 
plate from transient temperature imaging analysis 
is widely developed. Most usual methods are 
based on very restrictive assumptions such as the 
independence of the pixels (one dimensional 
diffusion with uniform heating of the front face of 
the sample). One difficulty is to take into account 
the spatial correlation between pixels due to 3D 
transverse effects.   

Such correlation is taken into account in 
specific experimental situations such as the flying 
spot techniques, where the sample is assumed to 
be locally homogeneous. Other situations remains 
difficult because the estimation of thermophysical 
properties field from 2D temperature 
measurement is an ill-posed problem. Moreover, 
the practical implementation of the estimation is 
here affected by the large amount of the vectors 
(or matrices) to be observed and estimated. 

In order to overcome such problems a semi 
numerical analysis with a spatially random front 
face excitation is proposed here to detect a crack 
mapping with the cracks laid perpendicular to the 
excitation surface. 
 

 
INTRODUCTION 

Estimating a mapping of thermophysical 
properties from the analysis of transient images of 
temperature responses to a given heat excitation is 
widely developed. It is known as thermal non-
destructive evaluation or thermal NDE. It has 
been largely improved with the rapid evolution of 
IR cameras and the possibilities of image 
processing related to such devices. 

Detecting delaminations in thin plates of 
composite materials (or horizontal cracks 
following the plane direction of the composite 
plate) by infrared thermography has been studied 
since 1980 (see for example [1]). The majority of 
the processing methods associated to 
delamination detection consists in considering 
only a 1D heat transfer following the thickness 
direction, even if 2D or 3D heat transfer 
corrections have been studied (see [2]). In 1D 
experiments each pixel of the IR image is then 
assumed to be independent (non-correlated) of the 
other neighbouring pixels. In all classical 
experimental situations the in-plane diffusion 
effects are avoided with experimental precautions 
(spatially uniform excitation, thin samples…). 

At the opposite, methods based on in-plane 
diffusion in transient state have been implemented 
with very restrictive assumptions (homogeneous 
samples). They allow to estimate the macroscopic 
thermal diffusivity of anisotropic samples (see 
[3],[4]) or to study periodic heterogeneity by the 
consideration of homogenisation methods (see 
[5]). One of the main difficulties is then to take 
into account the spatial correlation of the pixels 
induced by 2D heat transfer. The thermal study of 
heterogeneous samples has been implemented 
with a successful technique called the « flying 
spot » method (see [6]). It consists in moving a 
laser hot spot on the front face of the sample and 
analysing the local transient temperature field 
around the spot. Such a method is efficient but 
experimentally difficult (slow scanning of the 
domain, optics and laser techniques, very short 
characteristic time of diffusion…). Moreover, 
only the thermally excited domain can be 
processed and only a few pixels can be 
concerned. 
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From a general point of view, estimating a 2D 
or 3D mapping of thermophysical properties from 
a 2D transient temperature field, without any 
assumption about the distribution of the 
properties, is an « ill-posed » problem. The 
implementation of general inverse methods 
presents particular difficulties. In fact, the size of 
the parameter vector to estimate is great and 
consequently, the size of the associated Hessian 
matrices to invert is great too. Then, the quantity 
of data to minimise is quite huge and at last, there 
is the problem of the « classical » ill conditioning 
of the Hessian. The problem has only been 
studied in stationary state (see [7] for a 
bibliographic review of such problems). 
Paradoxically, such a situation is difficult to be 
experimentally developed because the stationary 
thermal non-equilibrium needs a lot of difficult 
precautions (temperature regulations, control of 
the heat losses…). 

 
The main idea of this work is to propose a 

new evaluation method, which associates a simple 
experiment in transient state and some classical 
considerations about the maximum likelihood 
principle and estimation theory in linear cases. 
The aim is to estimate the diffusivity field by 
processing some successive images in diffusive 
evolution from a spatially random initial 
temperature distribution. Inversion of great 
systems is avoided due to neighbourhood 
considerations of the heat transfer. The property 
of thermal diffusion is represented by the 
Laplacian operator, which correlates the signal of 
one pixel and its immediate spatial neighbours. 
The thermal inertia is represented by the time 
derivative which correlates the signal of one pixel 
at times t  and tt ∆+ . It is then possible to 
process the large amount of data with the same 
principle as autoregressive methods on spatial 
fields, while such methods are usually applied to 
process 1D transient signal (see [8]). 

The specific case studied here is related to the 
estimation of a 2D field of properties from the 
observation of a 2D transient successive images 
but in a case of 3D transient diffusion (heat pulse 
on a fractured semi-infinite sample). Such 
situation is related to the need of experimental 
characterization of fractured media in various 
domains such as composite materials, geological 
samples, small scale structural analysis of 
metallic samples. 

 The advantage of the semi-numerical 
quadrupole method used here is to consider the 
separability of the 3D-transient temperature 
distribution. The forward problem and the 
estimation method will be presented in the next 
sections. Numerical examples will then be 
explained in order to examine the practical 
aspects of the method. 
 
EXPERIMENTAL SITUATION AND 
FORWARD PROBLEM 

The main objective of the present work is to 
propose new estimation methods related to simple 
experiments (see figure 1) in order to estimate 
cracks cartographies in the particular case where 
the cracks are perpendicular to the observation 
surface (x-y surface) and uniform following the z-
direction. The experiment consists in making a 
heat pulse excitation on the front face of a semi-
infinite sample, initially uniformly at zero 
temperature and with lateral adiatic conditions. A 
spacially random radiation is obtained with a 
semitransparent film inserted between the lamp 
and the samples. After the pulse, the lamp and the 
film are removed and the front face (x-y surface at 
z=0) temperature field is observed. The main 
originality of the front excitation is to be spatially 
random instead of a unique spot or spatially 
uniform radiation. 

 

Semi-transparent film printed 
with a random spatial 
distribution of black spots 

Semi-infinite cracked sample (cracks 
uniforms following z-direction) x 

z 

y 

IR Camera 

Halogen lamp 

Fig 1: Scheme of the experimental device 
 
In a medium with uniform properties versus z-
direction and cracks perpendicular to the front 
surface, such as the one depicted in Figure 1, 3D 
transient heat diffusion is governed by the 
following general equation : 
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The method is concerned by the detection of 

cracks, which are thin air layers of low thermal 
inertia. In such a situation, only a thermal 
conductivity variation (x,y)k x  and (x,y)k y

 of the 
sample will be considered, while the volumic 
specific heat cρ  and the thermal conductivity 

zk will be assumed to be uniform. 
At this stage, a semi-analytical  quadrupole 

approach is applied in order to solve such a 
system (see [9],[10],[11]). Space discretization of 
expression (1) is performed only versus x and y 
direction and considered as continuous versus the 
z  direction. The temperature field is then 
represented by the NxN nodes i,j defining 

)t,z(T j,i . Performing a Laplace transformation, 
such as: 

∫
∞

−=
0

dt).t,z(T)stexp()s,z(T j,ij,i
  (2) 

Introducing the vector T  which 
components are the Laplace transformed 
temperatures )s,z(T j,i at the position z, 
expression. (1) can be written in such a matrix 
form: 
   

( ) 02

2
11 =−+ −−

dz
dsak z//z

TTIΜ   (3) 

 
where //Μ  is a finite differences operator, I  the 
identity matrix (Matrices of size NxN) and za  is a 
constant longitudinal thermal diffusivity such as: 

c/ka zz ρ= . The general solution of such 
ordinary differential system can be presented with 
a function of matrix such as: 
 

( )( ) )s,(zsakexp)s,z(
/

z//z 0
2111 TIΜT −− +−=  

     (4) 
A direct relationship between the Laplace front 
face temperature vector s)0,(z =Τ  and the 
Laplace heat flux vector s)0,(z =Ψ is found for 
the semi-infinite medium as (see [11]) : 
 

s)0,(zs)0,(z === ΨΤ Z  (5-a) 
 
Z is a transfer matrix defined as:  

 
( ) 12111 −−−− += z

/

z//z k)sak IΜZ  (5-b)
 
The function of matrix used in expression (5-

b) is here separable by using the shift properties 
of the Laplace transform. If the longitudinal 
diffusivity za  is non-uniform versus x and y, the 
problem becomes then non separable (see [11]).  

Here, 
//zk Μ1−  is diagonalisable such as: 

( ) 11 −− = PPΜ Ω//zk  with Ω  diagonal matrix. It 
induces that 

 
( ) 11211 −−−−+= z

/

z ksa PIPZ Ω  (6) 
 
If the excitation on the front face is a heat 

pulse, the components of vector s)0,(z =Ψ are 
constant independent on the s variable 
(

0ΨΨ == s)0,(z ). 
Since elementary properties of inverse 

Laplace transform are considered such as 
 

( ) t/s/L π111 =−  and 

( ) t/)Ktexp(Ks/L π−=+− 11  (7)
  
From expression (7), the inverse Laplace 

transform of s)0,(z =Τ  is turned into: 
 

( ) 0ΨPPΤ 111 −−−== zz
z

ktaexp
a/t

t)0,(z Ω
π

 

 (8-a) 
or with exponential of matrix notation : 

( ) 0ΨΜΤ 111 −−−== z//
z

kt)c(exp
a/t

t)0,(z ρ
π

 

 (8-b) 
If the averaged temperature versus x and y 

direction is considered, such as: 

∑∑
= =

=
N

i

N

j
j,i )t,z(T

N
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1 1
2

1   (8-c) 

The behaviour of t)(z,T  is then only related 
to the first eigenvalue of matrix //Μ  which is 
zero, such as : 

∑∑
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     (8-d) 
Such situation allows to consider that the 

temperature response to any heat pulse excitation 
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at z=0 can be expressed as the product of two 
separated temperature evolutions such as: 
 

 
)t,z(T)t,y,x(T)t,z,y,x(T zy,xz,y,x ×=  (9) 

At z=0, the previous expression becomes: 
 

t/C)t,y,x(T

)t,z(T)t,y,x(T
)t,z,y,x(T

y,x

zy,x

×=

=×=
=

0
0

  (10) 

 
At this stage, only a constant  C is considered 

in expression (10) instead of the exact 
proportionality coefficient for exact temperature 
level, because exact IR temperature 
measurements are very difficult (knowledge of 
emissivity, detectors calibration). Such 
proportionality coefficient will not be taken into 
account in the next steps, but does not disturb the 
diffusivity estimation procedure. 

The analysis of the observable 
t)t,z,y,x(T)t,y,x(T z,y,xy,x ×== 0  is then related 

to the analysis of a purely 2D signal which verify 
a 2D diffusion problem such as: 
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IMPLEMENTATION OF THE ESTIMATION 
METHOD 

At this stage, for easier presentation, the 
discretized vector related to the transformed 2D 
field : t)t,z,y,x(T z,y,x ×= 0  is noted: tT . 

The estimation problem is then reduced to a 
2D heat transfer problem and previous matrix 
notation (expression 8-b) allows to write: 

 
( ) tt TΜT t)c(exp //

t ∆∆ 1−+ −= ρ   (12a) 
      

For small time step, it yields the following 
classical explicit expansion: 

 
ttt TΜTT //

t t)c( ∆∆ 1−+ −≈ ρ   (12b) 
The decomposition of the finite differences 

matrix //Μ yields then: 
 

tt
xx

ttt TATA∆TATT yy
t *.*.*. δδδδ ++=−+∆

     (13) 

The notation « .* » represents term to term 
multiplication between vectors, such as in Matlab 
software notations (see www.mathworks.com). 
with: 

[ ]t
ji,T=tT ; [ ]t

ji,
t

1ji,
t

1ji,
t

j1,i
t

j1,i T4.TTTT −+++= −+−+
t∆T  

(14a) 
t∆T  is a vector obtained by the Laplacian of the 

previous vector tT . 

[ ]t
j1,i

t
j1,ix TT −−+=tTδ

 [ ]t
ji,

t
ji,y TT 11 −−+=tTδ   (14b) 

tTxδ  and tTyδ  are vectors obtained with 

spatial shifts and differences of the vector tT . 

[ ] [ ]i,ji,j a.
∆x²
∆tk.

c∆x²
∆t

==
ρ

A

[ ]j1,ij1,ix kk.
c∆x²

∆t
−+ −=

ρ
δ A ; 

[ ].1ji,1ji,y kk.
c∆x²

∆t
−+ −=

ρ
δ A   (15) 

 
A , Axδ , and .y Aδ  are vectors related to the 
local diffusivities which are parameters of the 
system, they are obtained with spatial shifts and 
differences of the previous vector A . The lateral 
faces are assumed to be adabatic. 

From expression. (13) the temperature 

mapping t∆+tT is  easily calculated at time 
tt ∆+ from the knowledge of temperature 

mapping tT  at time t. Such an approximation is 
only valid if time and space steps ∆t  and ∆x are 
small. One other criterion such as: 

14 2 <<∆∆ x/ta j,i  must be verified at each node 
(see [12]) from the temperature image is assumed 
to be uniform and non-dependent from the pixels 
in the neighbourhood. Since the measured 
temperature of the pixel is multiplied by t , the 
covariance matrix related to propagation of the 
measurement noise on the tt TT −+ t∆  is 
proportional to t. 

The estimation of a parameter vector B 
composed of the vectors A , Axδ and Ayδ  can 
then be obtained by considering the minimization 
of the ponderated quadratic distance S such as: 
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( )( ) ( )( )BXTTtBXTT 1 −−−−= − ˆ'ˆˆ'ˆ T
S  (16) 
 
where ( )TT ˆ'ˆ −  is an observable vector whose 
components are the difference between successive 
temperature images observed at time t and tt ∆+  
and X  is a rectangular sensitivity 
matrixwhosecomponents are linear 
combinationssuch as: 
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One estimator of the parameter vector B  
yields from the maximum likelihood principle 
(see [13]): 

 

( ) ( )TTtXXtXB 11 ˆ'ˆTT −= −−− 1
  (18) 

 
The main advantage of Eq. (18) is that 

)ˆ'ˆT TT(tX 1 −−  is a weighted sum of the signal 
which can be incremented in real time without 
memory storage. Even if the signal is noisy, the 
great deal of data ( observable vector TT ˆ'ˆ − ) can 
allow a very confident estimation of B . The 
inversion of ( )XtX 1−T  is reduced to the 
inversion of successive small sized (3x3) matrices 
which can be implemented with symbolic 
computation softwares (see the “symbolic math 
toolbox” of Matlab, ( www.mathworks.com)). 

It is important to note that the main difficulty 
of the general problem linked to the estimation 
and handling of great parameter vector and 
systems is here avoided. For the sake of 
simplicity, the ill conditioning problems 
of ( )XtX 1−T  and other problems due to the fact 
that X is built from the observable will not be 
considered here. 

In the case of low cost cameras with very 
noisy signal, the main objective is to develop 

rough but simple evaluation methods instead of 
very accurate but difficult estimation methods 
from expression (18), with a small number of 
parameters. 

If the parameter vector is reduced to the A  
matrix, the sensitivity matrix X  becomes: 
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The inversion of XtX 1−T  is then easy and the 
estimation is reduced to: 

[ ] [ ]( ) [ ] ( )TTtT∆T∆tT∆A 1
1

1 ˆ'ˆˆˆˆ TT
−= −

−
−  (20)  

 
Equation (20) is a biased expression since it is 
only deduced from a first order approximation of 
the system (13). Nevertheless, such an 
approximation allows to understand and to 
improve the experimental conditions. 

The very simple structure of the sensitivity 
matrix presented in expression (20) allows to 
deduce that the best estimation conditions will 
occur when the Laplacian of the temperature 
image T∆ˆ  is maximum. Of course, the relaxation 
of the temperature field due to the diffusion 
process will be minimum or zero at long time and 
maximum at the initial state. Thus, a uniform 
temperature field or a linear one in x or y direction 
is not efficient because its Laplacian is nearly 
zero in the case of homogeneous sample. The 
optimal field exists, but it requires a priori 
knowledge of the mapping of thermal properties, 
which is precisely the aim of the study. In such 
situation, a spatially random initial field appears 
to be the best compromise. It allows to obtain a 
temperature field with a uniform spatial spectral 
density at initial time. 
 
SOME NUMERICAL EXAMPLES 

In order to allow a simple presentation of 
different aspects of the method, only 1D images 
will be calculated by the forward method and then 
inverted. Nevertheless, all the remarks given here 
can be extended to the case of 2D images without 
difficulties. 

One example of matlab software is given in 
appendix, in order to give more details about the 
practical implementation. 
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Such examples will help the experimentalist 
to explore the limitations of the numerical 
processing and to design the experiment. 

It will there consist to solve numerically the 
forward problem (expression of t∆+tT  from the 
knowledge of tT  with the explicit system (13). 
The simulated IR image is then obtained with a 
division by t and a random noise addition. 

 The estimation of the A matrix is then 
obtained by a product of the simulated image by 

t  and processing with expressions (18) or (20).  
The parameters introduced in the calculation 

are very near from experimental conditions in the 
field of NDE for composite or metallic media 
(N=100, 12410 −−= sma , m.x 0050=∆ , s.t 040=∆ ). 

The fractures are represented by lower 
diffusivity distribution  on very limited zones 
(generally 1 pixel width). Obviously, the fracture 
will not be precisely located, due to the 
resolution limitations of the imaging system. 
 
Example 1: Homogeneous plate 
locally excited 

The first example is devoted to the study of a 
homogeneous plate only locally excited by a heat 
pulse at x=0 and z=0. It consists in considering 

an initial vector: 0tT  as: ,....],,,[ 00010 =
tT  in 

incrementation given by expression (13). 
In the case of a homogeneous medium, an 

analytical expression is available and allows to 
validate the numerical scheme. Such analytical 
model can also be linked to the initial 
temperature field observed at t=0 on the front 
face of the sample. 









−=

at
xexp

t
(x,t)Tx 42

1 2

π
 (21) 

The observation of the temperature field 
calculated from  Eq. (13) allows to locally 
estimate the diffusivity field which is here 
homogeneous. The Fig. 2-a shows the 
temperature distribution at several time steps. 
The estimation results obtained from Eq. (18) - 
respectivelly Eq. (20) are ploted on Fig. 2-b 
(resp. Fig. 2-c). It can be observed that the 
estimation is only efficient in a zone where the 
temperature field is perturbed. The estimation of 
the theoretical diffusivity is quasi-perfect near 
x=0 and y=0 (or i=j=1), then, the estimation 
becomes biased when the temperature gradient is 
becoming to be low. The constant bias observed 
out of the excited zone is related to the uncertain 

sensitivity matrix. The simpler expression (20) 
gives here a larger estimated zone than 
expression (18). 
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Fig 2: a-several temperature distributions; b- 
estimated diffusivity distribution with expression 
(18); c- estimated diffusivity distribution with 
expression (20). Estimations  obtained with 400 
time steps and  noise amplitude: sig=0.0001 (see 
the sofware)  
 
Example 2: Heterogeneous 
medium, with two defaults and 
randomly distributed excitation 

The energy of excitation is distributed all 
over the plate. The initial 2D temperature 

distribution is then such as: ),N(rand 10 =
t

T  
(“rand” of Matlab, see www.mathworks.com). 
The sample contains both a thin crack and a 
larger heterogeneous zone. 
( 124125 1010 −−−− == sma;sma sanecracks ). 

The figure 3-a shows then the temperature 
distributions at several time steps.  

The estimation of the diffusivity distribution 
with Eq.(18) is shown on Fig. 3-b and from Eq. 
(20) on Fig. 3-b. Equation (18) gives a better 
resolution but is noisier than Eq. (20) which is a 
slightly biased is the case of localized defects. Of 
course, such results could be greatly improved 
with a lower measurement noise, or a higher 
initial temperature field. 

This example clearly demonstrates the 
practical advantage of such method compared to 
a one spot technique (see the previous example). 
The estimation of the mapping is made 
instantaneously all over the sample. 
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Fig 3: a-Several temperature distributions; b- 
estimated diffusivity distribution with expression 
(18); c-estimated diffusivity distribution with 
expression (20). Estimations obtained with 50  
time steps and noise amplitude: sig=0.01 (see 
the software in appendix) 
 
CONCLUSION 

This work is an application of the semi-
analytical quadrupole approach ([9],[10],[11]) 
which is here very helpful to demonstrate the 
separability of the 3D temperature field. It allows 
to implement then an efficient inverse method 
with simple consideration relative to linear 
estimation methods. 

The great advantage of such methods is to 
avoid memory storage and to offer a simple way 
to process the great quantity of data related to 3D 
heat diffusion in heterogeneous media.  
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Some perspectives are to explore the 
experimental limits and the bias resulting from 
the uncertain sensitivity matrix. Some other 
situations such as time-periodic and space-
random excitation or time and space-random are 
also of interest.  
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APPENDIX: matlab software (example)  
 
 
%data 
N=100;ax=1e-4;dt=0.04;dx=0.005;delt=dt/dx/dx; 
x=dx*(1:N)'; H=[0 N*dx 0 4*ax];sig=0.01; %data 
T0=rand(N,1);%initial temp vect (random) 
%T0=[1;zeros(N-1,1)];%initial temperature (pt source) 
a=ax*[ones(1,50) 0.1 ones(1,49)];%heter. med. 
%a=ax*ones(1,N);%homogeneous medium 
 
%operators 
lap=-diag([1 2*ones(1,N-2) 1],0)+... 
    diag(ones(1,N-1),1)+diag(ones(1,N-1),-1);%laplacian 
dif=diag([-ones(1,N-1) 0],0)+diag(ones(1,N-1),1);%differ 
 
%initialization 
TI=T0;TIB=T0*sqrt(dt);S1=zeros(N,1);S2=zeros(N,1); 
S3=zeros(N,1);S4=zeros(N,1);S5=zeros(N,1); 
 
%iteration 
for i=2:1000 
TIBM=TIB;%noisy field at previous time step 
 

%Forward simulation 
t(i)=i*dt;TI=TI+delt*diag(a)*lap*TI+delt*(dif*a').*(dif*TI); 
TIB=TI/sqrt(t(i))+sig*randn(size(TI));%noisy IR signal 
Tana=1/2/sqrt(pi*t(i))*exp(-x.*x/4/ax/t(i))*sqrt(t(i));%anal 
%plot(x,TIB,x,Tana,'o'),axis([0 N*dx 0 2]), figure(1) 

plot(x,TIB),axis([0 N*dx 0 2]), figure(1) 
 
%estimation 

S1=S1+(dif*TIBM)*t(i-1)./t(i).*(dif*TIBM); 
S2=S2+(lap*TIBM*sqrt(t(i-1)))/t(i).*(TIB*sqrt(t(i))-
TIBM*sqrt(t(i-1))); 
S3=S3+(dif*TIBM)*t(i-1)./t(i).*(lap*TIBM); 
S4=S4+(dif*TIBM*sqrt(t(i-1)))/t(i).*(TIB*sqrt(t(i))-
TIBM*sqrt(t(i-1))); 
S5=S5+(lap*TIBM)*t(i-1)/t(i).*(lap*TIBM); 
ae1=(S1.*S2-S3.*S4)./(S1.*S5-S3.*S3);%expression(18) 
ae2=S2./S5;%expression(20) 
 
 %plotting 
plot(x,ae1*dx*dx/dt,x,a),axis(H), figure(2) 
plot(x,ae2*dx*dx/dt,x,a), axis(H), figure(3), pause 
end 


